Eigenvalue Calculations of a TESLA Cavity including the Fundamental Power Coulper

W. Ackermann, W.F.O. Müller, H. De Gersem Institute for Accelerator Science and Electromagnetic Fields (TEMF), TU Darmstadt

Outline

- Motivation
- Numerical Results based on 3D Eigenmode Analysis
 - TESLA 1.3 GHz Cavity with Antenna
 - Extraction of 2D Waveguide Modes
 - External Quality Factor
 - TESLA 1.3 GHz Cavity with FPC
 - Extraction of 2D Waveguide Modes
 - External Quality Factor
 - TESLA 1.3 GHz Cavity with FPC and additional Scatterer
 - Extraction of 2D Waveguide Modes
 - External Quality Factor
- Summary / Conclusion

Outline

Motivation

- Numerical Results based on 3D Eigenmode Analysis
 - TESLA 1.3 GHz Cavity with Antenna
 - Extraction of 2D Waveguide Modes
 - External Quality Factor
 - TESLA 1.3 GHz Cavity with FPC
 - Extraction of 2D Waveguide Modes
 - External Quality Factor
 - TESLA 1.3 GHz Cavity with FPC and additional Scatterer
 - Extraction of 2D Waveguide Modes
 - External Quality Factor
- Summary / Conclusion

Motivation

TESLA 1.3 GHz Cavity

- Cavity with FPC Antenna and two HOM couplers

Motivation

TESLA 1.3 GHz Cavity

- Cavity with FPC Antenna and two HOM couplers

Motivation

TESLA 1.3 GHz Cavity

- Cavity with FPC Antenna and two HOM couplers

Outline

Motivation

- Numerical Results based on 3D Eigenmode Analysis
 - TESLA 1.3 GHz Cavity with Antenna
 - Extraction of 2D Waveguide Modes
 - External Quality Factor
 - TESLA 1.3 GHz Cavity with FPC
 - Extraction of 2D Waveguide Modes
 - External Quality Factor
 - TESLA 1.3 GHz Cavity with FPC and additional Scatterer
 - Extraction of 2D Waveguide Modes
 - External Quality Factor
- Summary / Conclusion

TESLA 1.3 GHz Cavity

TESLA 1.3 GHz Cavity

- Magnitude of the Waveguide Modes in the Monitor Plane

Outline

Motivation

Numerical Results based on 3D Eigenmode Analysis

- TESLA 1.3 GHz Cavity with Antenna

- Extraction of 2D Waveguide Modes
- External Quality Factor

- TESLA 1.3 GHz Cavity with FPC

- Extraction of 2D Waveguide Modes
- External Quality Factor
- TESLA 1.3 GHz Cavity with FPC and additional Scatterer
 - Extraction of 2D Waveguide Modes
 - External Quality Factor

Summary / Conclusion

Beam Tube Upstream

TESLA 1.3 GHz Cavity

- Attachment of the Fundamental Power Coupler

TESLA 1.3 GHz Cavity

TESLA 1.3 GHz Cavity

- TESLA 1.3 GHz Cavity
 - Fundamental Power Coupler

• TESLA 1.3 GHz Cavity

- Fundamental Power Coupler

Bellow Outer Conductor (simplified in the simulations)

TESLA 1.3 GHz Cavity

TESLA 1.3 GHz Cavity

- 2D Modal Field Strength in the Monitor Plane

TESLA 1.3 GHz Cavity

- 2D Modal Field Strength in the Monitor Plane (no FPC)

Outline

Motivation

Numerical Results based on 3D Eigenmode Analysis

- TESLA 1.3 GHz Cavity with Antenna

- Extraction of 2D Waveguide Modes
- External Quality Factor

- TESLA 1.3 GHz Cavity with FPC

- Extraction of 2D Waveguide Modes
- External Quality Factor
- TESLA 1.3 GHz Cavity with FPC and additional Scatterer
 - Extraction of 2D Waveguide Modes
 - External Quality Factor

Summary / Conclusion

TESLA 1.3 GHz Cavity

- Artificial Scatterer within the Rectangular Waveguide

TESLA 1.3 GHz Cavity

 TESLA 1.3 GHz Cavity $s_{11} = \frac{a_1}{b_1}$ Mode 1 a_1 $\operatorname{Im}(a_1)$ 2000 $\ell = i \, \frac{\lambda}{10}$ Value of 1000 0 0 C. C. 0 a_1 -1000 b_1 b a-2000 -3000 -2000 1000 2000 -10000 $\operatorname{Re}(a_1)$

TESLA 1.3 GHz Cavity

- External Quality Factor

9-Cell TESLA 1.3 GHz Cavity

- Single-Particle Tracking

incoming wave

- Trajectory in the Horizontal and Vertical Planes

TESLA 1.3 GHz Cavity

- Horizontal and Vertical Coupler Kicks

Summary / Conclusion

Summary

- Numerical Results based on 3D Eigenmode Analysis
 - Modeling of a TESLA 1.3 GHz Cavity with
 - Simple Antenna Tip and a short Coaxial Waveguide
 - Fundamental Power Coupler (FPC)
 - Fundamental Power Coupler and an additional Scatterer
 - Observations of
 - 2D Waveguide Mode Amplitudes and Reflection Coefficients
 - External Quality Factors
 - Horizontal and Vertical Kick Factors

Conclusion

Magnitude and Phase of the additional scatterer should be adjustable to modify the Quality Factor and Coupler Kick

