Numerical Optimization of the Shintake Cavity

Simon Karau, Peter Hülsmann, Michael Bousonville, Silke Vilcins Hamburg, MHF, 2023-12-04

Overview

Table of Contents

1. Principle of the Choke-Mode-Cavity

- Concept of the Choke-Mode-Cavity by T. Shintake 1992
- Rough Verification of Measured Cavity Spectrum of the Original Paper by CST Frequency-Domain-Solver

2. One-Cell 1.5 GHz Choke-Mode-Cavity

- General Cavity Structure and Optimization of TM₀₁₀ Mode by CST Eigenmodesolver
- Selection of a Damping Material and Simulation in CST Frequency-Domain-Solver
- Mode Overview of Nose-Coned Choke-Mode-Cavity by CST Eigenmodesolver

3. Coupler and Tuner System

- Specification of the Coupler & Tuner System
- Coupler & Tuner in the Radial-Line

4. Summary and Outlook

Concept of the Choke-Mode-Cavity by T. Shintake 1992

Cylindrically Radial-Line ending with a Damper on a Cavity

- All TM-Modes (and most TE-Modes) will excite the Radial-Line
- and will be attenuated by the Damper.

Adding a <u>Choke</u> in the Radial-Line to protect TM_{010} Mode

- The **Short** will be transformed by $\lambda/4$ into an **Open**.
- Serial junction added impedance $Z_{choke} = \infty$ and Z_{damper}

 $Z_{\text{junction}} = Z_{\text{choke}} + Z_{\text{damper}} = \infty$ (Open)

and has a infinitely impedance independent of the damper.

• Distance of $\lambda/4$ transforms the **Open** into a **Short** with $Z_{wall} = 0$.

Damping of Higher Order Modes (HOMs):

- Almost all HOMs are strongly attenuated
 -> Only not critical TE_{0ng} can not excite the Radial-Line
- The TM₀₁₀ acceleration Mode is protected by the Choke
 Sko
 Sko

Sketch from T. Shintake, "The Choke Mode Cavity", 1992.

Concept of the Choke-Mode-Cavity by T. Shintake 1992

Cylindrically Radial-Line ending with a Damper on a Cavity

- All TM-Modes (and most TE-Modes) will excite the Radial-Line
- and will be attenuated by the Damper.

Adding a <u>Choke</u> in the Radial-Line to protect TM_{010} Mode

- The **Short** will be transformed by $\lambda/4$ into an **Open**.
- Serial junction added impedance $Z_{choke} = \infty$ and Z_{damper}

 $Z_{\text{junction}} = Z_{\text{choke}} + Z_{\text{damper}} = \infty$ (Open)

and has a infinitely impedance independent of the damper.

• Distance of $\lambda/4$ transforms the **Open** into a **Short** with $Z_{wall} = 0$.

Damping of Higher Order Modes (HOMs):

- Almost all HOMs are strongly attenuated
 -> Only not critical TE_{0ng} can not excite the Radial-Line
- The TM₀₁₀ acceleration Mode is protected by the Choke
 -> Only current losses will attenuate the TM₀₁₀ Mode (perfect Choke)

Sketch from *T. Shintake, "The Choke Mode Cavity", 1992* and an added Smith Chart visualization of the Choke

Concept of the Choke-Mode-Cavity by T. Shintake 1992

Cylindrically Radial-Line ending with a Damper on a Cavity

- All TM-Modes (and most TE-Modes) will excite the Radial-Line
- and will be attenuated by the Damper.

Adding a <u>Choke</u> in the Radial-Line to protect TM_{010} Mode

- The **Short** will be transformed by $\lambda/4$ into an **Open**.
- Serial junction added impedance $Z_{choke} = \infty$ and Z_{damper}

 $Z_{\text{junction}} = Z_{\text{choke}} + Z_{\text{damper}} = \infty$ (Open)

and has a infinitely impedance independent of the damper.

• Distance of $\lambda/4$ transforms the **Open** into a **Short** with $Z_{wall} = 0$.

Damping of Higher Order Modes (HOMs):

- Almost all HOMs are strongly attenuated
 -> Only not critical TE_{0ng} can not excite the Radial-Line
- The TM_{010} acceleration Mode is protected by the Choke
 - -> Only current losses will attenuate the TM_{010} Mode (perfect Choke)

Sketch from *T. Shintake, "The Choke Mode Cavity", 1992* and an added Smith Chart visualization of the Choke

Rough Verification of Measured Cavity Spectrum of the Original Paper by CST Frequency-Domain-Solver Cavity S-Paras. from T. Shintake, "The Choke Mode Cavity", 1992 **CST Frequency-Domain-Solver S-Params.** cavity S-Parameters [Magnitude] TM020 - S2.1 01 TM-210 0 to 10 GHz. AS **Pillbox Cavity** choke mode TM011 TM110 0 TM010 -30 -40 span 晲 -5(Pillbox Cavity and (b) the Microwave Absorber TDK IRA065 t4.6 mm -60 frequency scale: 1 GH/div, -70 **TE011** Rods (4 rods TM210 of (a) the pillbox cavity, -90 ECCOSORB -100 10 START 0.045000000 GHz Frequency / GHz STOP 10.00000000 GHz - S2,1 AN-73 (middle) đ -10 TM021 - axis AS Choke Mode Cavity Pick-up 30.0 -20 Ъů . -30 5.0 TM010 2 2 10 dB/div, 2855.6 MHz -40 TE011 E H 면 -50 Resonance spectrum Choke 33.4 -60 (TM110) -70 Vertical scale: Mode -80 unit (mm) Cavity -100 Frequency / GHz START 0.045020000 GHz STOP 10.000000000 GHz

DESY. | Numerical Optimization of the Shintake Cavity | Simon Karau (MHF), Date 2023-12-04

General Cavity Structure and Optimization of ${\rm TM}_{010}$ Mode by CST Eigenmodesolver

1.5 GHz Pill-Box Choke-Mode-Cavity (CMC)

- I. Starting Point
 - Exemplary 2.867 GHz Cavity from T. Shintake, "The Choke Mode Cavity", 1992
 - Damper:
 - CST Material Library: ECCOSORB AN-72 (front)
 - $\Delta r_{\text{Damper}} = 60 \text{ mm } \& h_{\text{Damper}} = 5 \text{ mm}$
- II. Scaling of the Model to 1.5 GHz
 - Scaling by Factor 1.9 & Rounding Edges with R = 3 mm
 - Reoptimization of the Structure by CST Eigenmodesolver
 - Get r_{PillBox} to get $f_{\text{res}} = 1.500 \text{ GHz}$
 - Find $l_{\text{Choke}} \& \Delta r_{\text{Choke}}$ by Iterations for:
 - $f_{\rm res} = 1.500 \, {\rm GHz}$
 - $\max\{Q_0\}$
- III. Pill-Box Choke-Mode-Cavity with Beam-Pipe
 - Adding the $\emptyset = 46 \text{ mm}$ Petra IV Beam-Pipe
 - Optimization of Pill-Box Length l_{Cavity} for max. $R_{sh,eff}$
 - Reoptimization of the Structure by CST Eigenmodesolver

General Cavity Structure and Optimization of ${\rm TM}_{010}$ Mode by CST Eigenmodesolver

1.5 GHz Pill-Box Choke-Mode-Cavity (CMC)

- I. Starting Point
 - Exemplary 2.867 GHz Cavity from T. Shintake, "The Choke Mode Cavity", 1992
 - Damper:

- CST Material Library: ECCOSORB AN-72 (front)
- $\Delta r_{\text{Damper}} = 60 \text{ mm } \& h_{\text{Damper}} = 5 \text{ mm}$

II. Scaling of the Model to 1.5 GHz

- Scaling of the Dimensions & Rounding Edges with R = 3 mm
- Reoptimization of the Structure by CST Eigenmodesolver
 - Get r_{PillBox} to get $f_{\text{res}} = 1.500 \text{ GHz}$
 - Find $l_{\text{Choke}} \& \Delta r_{\text{Choke}}$ by Iterations for:
 - $f_{\rm res} = 1.500 \, {\rm GHz}$
 - $\max\{Q_0\}$
- III. Pill-Box Choke-Mode-Cavity with Beam-Pipe
 - Adding the $\emptyset = 46 \text{ mm}$ Petra IV Beam-Pipe
 - Optimization of Pill-Box Length l_{Cavity} for max. $R_{sh,eff}$
 - Reoptimization of the Structure by CST Eigenmodesolver

Choke

General Cavity Structure and Optimization of ${\rm TM}_{010}$ Mode by CST Eigenmodesolver

1.5 GHz Pill-Box Choke-Mode-Cavity (CMC)

- I. Starting Point
 - Exemplary 2.867 GHz Cavity from T. Shintake, "The Choke Mode Cavity", 1992
 - Damper:
 - CST Material Library: ECCOSORB AN-72 (front)
 - $\Delta r_{\text{Damper}} = 60 \text{ mm } \& h_{\text{Damper}} = 5 \text{ mm}$

II. Scaling of the Model to 1.5 GHz

- Scaling by Factor 1.9 & Rounding Edges with R = 3 mm
- Reoptimization of the Structure by CST Eigenmodesolver
 - Get r_{PillBox} to get $f_{\text{res}} = 1.500 \text{ GHz}$
 - Find $l_{\text{Choke}} \& \Delta r_{\text{Choke}}$ by Iterations for:
 - $f_{\rm res} = 1.500 \, {\rm GHz}$
 - max{ Q_0 }

III. Pill-Box Choke-Mode-Cavity with Beam-Pipe

- Adding the $\emptyset = 46 \text{ mm}$ Petra IV Beam-Pipe
- Optimization of Pill-Box Length l_{Cavity} for max. $R_{sh,eff}$
- Reoptimization of the Structure by CST Eigenmodesolver

General Cavity Structure and Optimization of $\rm TM_{010}$ Mode by CST Eigenmodesolver

Nose-Cone Optimization

For further Optimization of the Cavity

- Noses are included:
 - At the Transitions of Cavity and Beam-Pipe
 - to increase the Volume of Stored Energy.
- Rounding of the outer Cavity Edges:
 - Reduces the Losses of the Cavity,
 - but are not used at the Back-Side, to ensure
 - the excitation of the Radial-Line by all TM-Modes.

	Pill-Box with Beam-Pipe		Nose-Cone with Beam-Pipe	
qTM ₀₁₀	Pill-Box	Pill-Box with Choke-Mode-Damper	Nose-Cone	Nose-Cone with Choke-Mode-Damper
f _{res} [GHz]	1.500	1.500	1.500	1.500
<i>Q</i> ₀ [1]	24153	20492 (85%)	23216	19782 (85%)
$R_{\rm sh,eff}$ [M Ω]	1.899	1.468 (77%)	2.202	1.706 (77%)
$R_{\rm sh,eff}/Q_0[\Omega]$	78.6	71.6 (91%)	94.8	86.2 (91%)
Λ_c [1]	61%	61%	66%	66%

DESY. | Numerical Optimization of the Shintake Cavity | Simon Karau (MHF), Date 2023-12-04

Selection of a Damping Material

General selection of an Damping Material

- First Simulations used non-practical Damping Materials
- As a real usable Damping Material
 - the Idea of single Ring of Siliziumcarbid (SiC) was adapted from
 - *T. Inagaki et al., "High-gradient C-Band Linac for a Compact X-Ray Free-Electron Laser Facility", 2014.* because of the simplicity and suitable Material Properties

Simulation Parameters

- RF Material Parameters ($\underline{\varepsilon}_r$) of SiC vary widely between
 - Manufacturing Technique,
 - Frequency and
 - Temperature

and must be measured to get precise Values.

- For Simulation before a Material Measurement
 - $\varepsilon_r = 20$
 - $tan \delta_E = 0.25$
 - are used.

DESY. | Numerical Optimization of the Shintake Cavity | Simon Karau (MHF), Date 2023-12-04

DESY. | Numerical Optimization of the Shintake Cavity | Simon Karau (MHF), Date 2023-12-04

DESY. | Numerical Optimization of the Shintake Cavity | Simon Karau (MHF), Date 2023-12-04

DESY. | Numerical Optimization of the Shintake Cavity | Simon Karau (MHF), Date 2023-12-04

DESY. | Numerical Optimization of the Shintake Cavity | Simon Karau (MHF), Date 2023-12-04

3. Coupler and Tuner System

Specification of the Coupler & Tuner System

Specification

- Keep manufacturing as simple as possible
 - Two Half Shells (Back & Top) without 45° Drilling
 - The Choke should not be turn around
- Actively adjustable Coupling Factor Range: *K* ≈ 0.2 to 5
- Broadband Tunable Resonant-Frequency Range: $\Delta f_{res} \approx \pm 1.5$ MHz (or more) to allow complete Detuning of the Cavity

3. Coupler and Tuner System

Specification of the Coupler & Tuner System

Specification

- Keep manufacturing as simple as possible
 - Two Half Shells (Back & Top) without 45° Drilling
 - The Choke should not be turn around
- Actively adjustable Coupling Factor Range: *K* ≈ 0.2 to 5
- Broadband Tunable Resonant-Frequency Range: $\Delta f_{res} \approx \pm 1.5$ MHz (or more) to allow complete Detuning of the Cavity

posln

Coupler.

This is necessary:

- A capacitive Coupling and Tuning,
- Positioned in the Radial-Line

Some Disadvantage:

- No longer perfect Symmetry
- Some part of the RF-Power at
 1.5 GHz can tunneling throw the Choke
 - The Q_0 of TM₀₁₀ will be decreased in some way
 - But this can reduced by optimization

3. Coupler and Tuner System

Coupler & Tuner in the Radial-Line

Summary and Outlook

Results & Next Steps

Curent Design

Simulated One-Cell 1.5 GHz Cavity Design

- Damping of all HOMs (Except TE_{0nq})
- Coupling and Tuning in the Radial-Line
 - Adjustable Coupling-Factor
 - Broadband Tunable Resonant-Frequency
- With a very simple structure

Next Steps

- Adding of Coaxial-Lines Sensors for Mode Measurement
- Selection and Purchase of an Siliciumcarbid (SiC) Ring
- Creation of a Prototype

Thank you

Contact

Simon Karau **DESY.** Deutsches Elektronen-Synchrotron MHF www.desy.de

simon.karau@desy.de -5052

References

- 1. T. Shintake, "The Choke Mode Cavity", Jpn. *J. Appl. Phys.,* pp. pp. L 1567-L1570, 1992.
- 2. T. Inagaki et al., "High-gradient C-Band Linac for a Compact X-Ray Free-Electron Laser Facility", Phys. Rev. ST Accel. Beams, vol. 17, p. 080702, 2014.