CC2,
 Continuous Charge Approach continued

Martin Dohlus, Christoph Henning
$4^{\text {th }}$ December 2024

Problem

- Beam dynamics with CSR for FEL-BC-systems since about a quarter century.
- Validity of models is confirmed to some extend by measurements.
- Experimental verification is limited to currently measurable effects and realizable parameter ranges.
new developments depend on being able to access that are ranges beyond that
- Computational verification of models is incomplete or missing.

What is difficult?	Simplifications used today:
non linear trajectory SC model (CUM) and/or CSR model (1d) variable bunch shape effects by glue physics	"1d" model with one-bend- or, multi-bend-interaction
line charge without retardation (rigid in history)	
chamber	none or infinite flat (two mirrors)
surface effects:	none

simple conductivity
anomalous skin effect
surface layers
surface roughness
The Continuous Charge approach is an attempt to understand the fields of charge distributions in realistic motion in free space.

Approach

Solve the driven problem in free space, still with simplifications.

These simplifications are:
2D = motion of "source particles" in XY plane, continuous source distribution (continuous 4D phase space), linear optics approximation for beam dynamics, only magnetic lattice,
no hard edges but fringe fields.
Beam dynamics with self effects is calculated in perturbation theory.
Restriction: gaussian source distribution

Perturbation approach:
Calculate phase space distribution without self effects. (Solve EOM.)
Calculate source terms of EM problem. (Unperturbed motion.)
Solve EM problem for these source terms.
Motion: treat self effects like external fields.
Sample these fields at the coordinates (location and velocity) of the unperturbed motion.

flat Accelerator vs Cartesian Coordinates

The external magnetic field $\mathbf{B}(X, Y, Z) \rightarrow \mathbf{B}(X, Y, 0)=\mathbf{e}_{Z} B_{Z}(X, Y)$ this field is smooth (there are fringe fields)
energy and initial conditions of a reference particle

$$
\mathcal{E}_{\mathrm{r}}, X_{(\mathrm{i})}, Y_{(\mathrm{i})}, Z_{(\mathrm{i})}=0, X_{(\mathrm{i})}^{\prime}, Y_{(\mathrm{i})}^{\prime}, Z_{(\mathrm{i})}^{\prime}=0 \text { at time } t_{(\mathrm{i})}
$$

\rightarrow path length $S=\left(t-t_{(\mathrm{i})}\right) v_{\mathrm{r}}$ and reference trajectory $X_{\mathrm{r}}(S), Y_{\mathrm{r}}(S)$

$$
\begin{aligned}
& {\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{c}
X_{\mathrm{r}}(S) \\
Y_{\mathrm{r}}(S)
\end{array}\right]+\left[\begin{array}{c}
-Y_{\mathrm{r}}^{\prime}(S) \\
X_{\mathrm{r}}^{\prime}(S)
\end{array}\right] x} \\
& t=\frac{S-S}{v_{\mathrm{r}}}
\end{aligned}
$$

$$
x, s, S \leftrightarrow X, Y, t
$$

$$
\rightarrow \text { explicit }
$$

$$
\leftarrow \text { implicit }
$$

\leftarrow implicit
$z=Z$ is the same in both systems
external magnetic field in accelerator coordinates

$$
B(S, x)=B_{Z}(X, Y) \approx B(S, 0)+x \partial_{x} B(S, 0)=\frac{p_{\mathrm{r}}}{q}\left(-\varphi^{\prime}(S)+x K(S)\right)
$$

linear field approximation

Linear Optics

decision on the state vector $\quad \begin{aligned} \mathcal{X}=\left(x, x^{\prime}, s, \eta\right)^{t} \quad \text { with } \quad \begin{array}{l}x^{\prime}\end{array}=d x / d S \\ \eta=\left(\mathcal{E}-\mathcal{E}_{\mathrm{r}}\right) / \mathcal{E}_{\mathrm{r}}\end{aligned}$
exact equation of motion $\frac{d}{d S} \mathcal{X}=f(S, \mathcal{X})=\underbrace{f_{(\mathrm{e})}(S, \mathcal{X})}_{\approx M(S) \mathcal{X}}+f_{(\mathrm{s})}(S, \mathcal{X}) F_{(s)} \underbrace{}_{\begin{array}{l}\text { Lorentz force } \\ \text { by self fields }\end{array}}$
linear approximation without self effects $\quad M(S)=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ -K-\varphi^{\prime 2} & 0 & 0 & -\varphi^{\prime} / \beta_{\mathrm{r}}^{2} \\ \varphi^{\prime} & 0 & 0 & 1 /\left(\gamma_{\mathrm{r}} \beta_{\mathrm{r}}\right)^{2} \\ 0 & 0 & 0 & 0\end{array}\right)$
transport matrix $\mathcal{X}(S)=T(S \leftarrow A) \mathcal{X}(A)$

$$
\frac{d}{d S} \mathcal{X}(S)=\frac{d T(S \leftarrow A)}{d S}(T(S \leftarrow A))^{-1} \mathcal{X}(S)=M(S) \mathcal{X}(S)
$$

solve $\quad \frac{d T(S \leftarrow A)}{d S}=T(S \leftarrow A) M(S)$

Density Functions

normalized gaussian 4d density $\quad g_{4}(\mathcal{X}, D)=\sqrt{\frac{\operatorname{det} D}{(2 \pi)^{4}}} \exp \left(-\frac{1}{2} \mathcal{X}^{t} D \mathcal{X}\right)$
with $D=C^{-1}$
the inverse of the 4D correlation matrix
initial gaussian 4d density $\quad f(\mathcal{X}, S=0)=q_{\mathrm{tot}} g_{4}\left(\mathcal{X}-\mathcal{X}_{o i}, C_{i}^{-1}\right)$
initial offset and initial 4D correlation matrix
gaussian 4d density $\quad f(\mathcal{X}, S)=q_{\text {tot }} g_{4}\left(\mathcal{X}-\mathcal{X}_{o}(S),(C(S))^{-1}\right)$

$$
\begin{array}{ll}
\text { with } & \mathcal{X}_{\mathrm{o}}(S)=T\left(S \leftarrow S_{\mathrm{i}}\right) \mathcal{X}_{\mathrm{oi}} \\
& C(S)=T\left(S \leftarrow S_{\mathrm{i}}\right) C_{\mathrm{i}} T\left(S_{\mathrm{i}} \leftarrow S\right)
\end{array}
$$

2d functions:

$\underset{\text { longitudinal 2d current density }}{\text { projection to space }} J_{S}(x, s, S)=v_{\mathrm{r}} \int f\left(\left[x, x^{\prime}, s, \eta\right]^{t}, S\right) d x^{\prime} d \eta$
averaged velocity $\quad \overline{\mathbf{v}}(x, s, S)=\frac{\int \mathbf{v}(\mathcal{X}, S) f(\mathcal{X}, S) d x^{\prime} d \eta}{\int f(\mathcal{X}, S) d x^{\prime} d \eta}$

can be integrated analytically

Tabulated and Analytic Functions

tabulated versus $S: \quad X_{\mathrm{r}}(S), Y_{\mathrm{r}}(S), \varphi(S), \varphi^{\prime}(S), K(S), T(S \leftarrow A)$
these functions are calculated once, with high accuracy and good resolution
analytic: $\quad J_{S}(x, s, S)=J_{S}(x, s, S, T(S \leftarrow A))$

$$
\overline{\mathbf{v}}(x, s, S)=\overline{\mathbf{v}}(x, s, S, T(S \leftarrow A))
$$

\rightarrow analytic derivatives

$$
\begin{aligned}
& \frac{\partial J_{S}(x, s, S)}{\partial x}=\frac{\partial J_{S}(x, s, S, T(S \leftarrow A))}{\partial x} \\
& \frac{\partial J_{S}(x, s, S)}{\partial S}=\frac{\partial J_{S}(x, s, S, T(S \leftarrow A))}{\partial S}+\sum_{i j} \frac{\partial J_{S}(x, s, S, T(S \leftarrow A))}{\partial T_{i j}} \frac{d T_{i j}(S \leftarrow A)}{d S}
\end{aligned}
$$

also known are $\frac{d T_{i j}(S \leftarrow A)}{d S}=(T(S \leftarrow A) M(S))_{i j}$

$$
J=\left(\frac{\partial[X, Y, t]}{\partial[x, s, S]}\right) \quad \text { Jacobi matrix }
$$

We can calculate all derivatives of Js and v
(to cartesian or accelerator coordinates) with help of tabulated functions!

EM Problem: Retarded Potentials

$$
\begin{aligned}
\rho(x, s, z, S) & =\frac{J_{S}(x, s, S)}{\overline{\mathbf{v}}(x, s, S) \cdot \mathbf{e}_{S}(S)} \delta(z) & \text { with } \mathbf{e}_{S}(S) & =X_{\mathrm{r}}^{\prime}(S) \mathbf{e}_{X}+Y_{\mathrm{r}}^{\prime}(S) \mathbf{e}_{Y} \\
\mathbf{J}(x, s, z, S) & =\overline{\mathbf{v}}(x, s, S) \rho(x, s, z, S) & \mathbf{e}_{x}(S) & =\mathbf{e}_{x} \times \mathbf{e}_{S}(S)
\end{aligned}
$$

only the flat part is needed

$$
\begin{aligned}
& \rho(x, s, S)=\frac{J_{S}(x, s, S)}{\overline{\mathbf{v}}(x, s, S) \cdot \mathbf{e}_{S}(S)} \\
& \mathbf{J}(x, s, S)=\overline{\mathbf{v}}(x, s, S) \rho(x, s, S) \\
& V(X, Y, Z, t)=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho(x(\hat{X}, \hat{Y}, \hat{t}), s(\cdots), S(\cdots))}{\sqrt{(X-\hat{X})^{2}+(Y-\hat{Y})^{2}+Z^{2}}} d \hat{X} d \hat{Y} \\
& \mathbf{A}(X, Y, Z, t)=\frac{\mu_{0}}{4 \pi \varepsilon} \int \frac{\mathbf{J}(x(\hat{X}, \hat{Y}, \hat{t}), s(\cdots), S(\cdots))}{\sqrt{(X-\hat{X})^{2}+(Y-\hat{Y})^{2}+Z^{2}}} d \hat{X} d \hat{Y}
\end{aligned}
$$

$$
\hat{t}=t-c^{-1} \sqrt{\cdots}
$$

retarded time
but $\hat{X}, \hat{Y}, \hat{t} \rightarrow x, s, S$ is implicit and expensive

Integration via Accelerator Coordinates

eliminate $s: \quad \hat{t}=\frac{S-s}{v_{\mathrm{r}}} \rightarrow s(\hat{X}, \hat{Y}, \hat{t})=S-v_{\mathrm{r}}\left(t+c^{-1} \sqrt{\cdots}\right)=\hat{s}$
substitution: $\hat{X}=X(S, x)$ is explicit

$$
\hat{Y}=Y(S, x)
$$

$$
d \hat{X} d \hat{Y}=\left(1-x \varphi^{\prime}\right) d x d S
$$

$$
\sqrt{\cdots}=\sqrt{(X-X(S, x))^{2}+(Y-Y(S, x))^{2}+Z^{2}}=\sqrt{a^{2}(S)+(x-b(S))^{2}}
$$

$$
\begin{aligned}
& V(X, Y, Z, t)=\frac{1}{4 \pi \varepsilon_{0}} \int \rho(x, \hat{s}, S) \frac{1-x \varphi^{\prime}}{\sqrt{\cdots}} d x d S \\
& \mathbf{A}(X, Y, Z, t)=\frac{\mu_{0}}{4 \pi \varepsilon} \int \mathbf{J}(x, \hat{s}, S) \frac{1-x \varphi^{\prime}}{\sqrt{\cdots}} d x d S
\end{aligned}
$$

derivatives to X, Y or t : for instance $\partial_{X} V$

$$
\frac{\partial V(X, Y, Z, t)}{\partial X}=\left.\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\partial \rho}{\partial X}\right|_{(x, \hat{s}, S)} \frac{1-x \varphi^{\prime}}{\sqrt{\cdots}} d x d S
$$

$$
\text { as }\left(\nabla^{2}-c^{-2} \partial_{t}^{2}\right)\left(\partial_{X} V\right)=\partial_{X}\left(\nabla^{2}-c^{-2} \partial_{t}^{2}\right) V=\partial_{X}\left(\varepsilon_{0}^{-1} \rho\right)
$$

Numerical Realization

simultaneous integration of all potentials and all derivatives

$$
\begin{aligned}
{\left[\begin{array}{c}
V(X, Y, Z, t) \\
\mathbf{A}(X, Y, Z, t) \\
\partial_{X} V(X, Y, Z, t) \\
\vdots
\end{array}\right] } & =\frac{1}{4 \pi} \int Q(x, \hat{s}, S) \frac{1-x \varphi^{\prime}}{\sqrt{a^{2}(S)+(x-b(S))^{2}}} d x d S \\
& \text { with } Q(x, s, S)=\left[\begin{array}{c}
\varepsilon_{0}^{-1} \rho \\
\mu_{0} \mathbf{J} \\
\varepsilon_{0}^{-1} \partial_{x} \rho \\
\vdots
\end{array}\right]_{(x, s, S)} \\
& \rightarrow \mathbf{E}=-\nabla V-\partial_{t} \mathbf{A}, \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

- needs a 2d integration for each X, Y, Z, t point
- independent (parallel) computation of different points
- it is advantageous to start with the x integration
- step width control is fairly simple
- singularity $(a(S) \rightarrow 0)$ needs some care
- analytic approximation for large $\sqrt{ }$... possible
- outer (S) integration is difficult

Sx Integration Range

example: uniform motion with $\beta=0.9$

S integration is difficult:
range for $S<S_{\mathrm{o}}$ is stretched range for $S>S_{\mathrm{o}}$ is compressed both parts might be of similar importance integral for $S \rightarrow S_{\mathrm{o}}$ might be singular
extreme stretch possible:
long compared to bunch length fringe fields element lengths drift lengths section length beam line

S Integration with Step Width Control = global \& component wise

- working horse (method for subintervals from A to B)

$$
\begin{aligned}
I=\int_{A}^{B} f(x) d x & \approx I_{\text {est }}=\sum_{n=1}^{N} a_{n} f\left(x_{n}\right)
\end{aligned} \begin{aligned}
& \text { Gauss-Kronrod quadrature, moderate } N \\
& \text { applicable to integrals that can be improper }
\end{aligned}
$$

- clever splitting of integration range into initial subintervals
- f.i. near-interval, far-interval, fringe-intervals, bend-interval etc
- individual interval properties as integration method
substitution of integration parameter
error weight
- adaptive integration by splitting of intervals
- inheritance of interval properties
- error estimation (\rightarrow working horse)
- error criterion and refinement strategy
global considerations
component considerations
noise
- abort criterion

Tracking with Perturbation

$$
\frac{d}{d S} \mathcal{X}=f(S, \mathcal{X})=\underbrace{f_{(\mathrm{e})}(S, \mathcal{X})}_{\approx M(S) \mathcal{X}}+\underbrace{f_{(\mathrm{s})}(S, \mathcal{X})} \quad F_{(s)}(S, \mathcal{X})+N(S) \mathcal{X}
$$

solve linearized equation of motion

$$
\begin{aligned}
\mathcal{X}_{\mathrm{o}}(A)=\mathcal{X}_{\mathrm{oi}} & & \text { initial condition (per particle) } \\
\mathcal{X}_{\mathrm{o}}(S)=T(S \leftarrow A) \mathcal{X}_{\mathrm{oi}} & & \text { unperturbed motion } \rightarrow \mathrm{EM} \text { sources } \\
\frac{d}{d S} \mathcal{X} \approx M(S) \mathcal{X}+\left(Q(S)+N(S) \mathcal{X}_{\mathrm{o}}\right) F_{(s)}\left(S, \mathcal{X}_{\mathrm{o}}\right) & & \text { perturbed motion } \\
\downarrow & &
\end{aligned}
$$

calculate beam dynamics properties
as projected emittance, slice emittance, slice energy spread

Example

several setups have been calculated:

- 4 magnet BC chicane
- Zeuthen benchmark BC, 500 MeV, 511 MeV, 5 GeV, 5.11 GeV
- XFELCW BC2
- Flash2020 BC1, BC2
- T20 beamline with combinded function magnet (XFEL)
- undulator (Pitz)

1) calculation of $E M$ quantities:
retarded potentials and derivatives have been calculated on a $x s S$-grid typically 100 .. 1000 points in S direction (along structure) typically 500 .. $1000 x s$-gridpoints (on smallest rectangle around 4σ ellipse)
2) perturbation tracking with interpolated field
\rightarrow beam dynamics properties
however, I am only showing one few curves for one example
benchmark BC @ 5 GeV : scalar potential and E-field before $1^{\text {st }}$ magnet, no vertical offset

horizontal optics: waist is at exit of $B C \rightarrow$ beam is convergent at entrance

horizontal optics:

waist at entrance
complete calculation: different horizontal optics

frustrating: the neglected vertical optics can cause similar effects
full beam parameters at exit due to self effect from " 0 " to S

center slice parameters at exit due to self effect from "0" to S

