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• Beam dynamics with CSR for FEL-BC-systems since about a quarter century.

• Validity of models is confirmed to some extend by measurements.

• Experimental verification is limited to currently measurable effects and realizable 

parameter ranges.

new developments depend on being able to access that are ranges beyond that

• Computational verification of models is incomplete or missing. 

What is difficult? Simplifications used today:

non linear trajectory SC model (CUM) and/or CSR model (1d)

variable bunch shape “1d” model with one-bend- or, multi-bend-interaction

effects by glue physics line charge without retardation (rigid in history)

chamber none or infinite flat (two mirrors)

surface effects: none

simple conductivity

anomalous skin effect

surface layers

surface roughness

The Continuous Charge approach is an attempt to understand the fields of 

charge distributions in realistic motion in free space.

Problem 1st lasing at TTF in Feb. 2000



Approach

Solve the driven problem in free space, still with simplifications.

These simplifications are:

2D = motion of “source particles” in XY plane,

continuous source distribution (continuous 4D phase space),

linear optics approximation for beam dynamics,

only magnetic lattice,

no hard edges but fringe fields.

Beam dynamics with self effects is calculated in perturbation theory.

Restriction: gaussian source distribution 

Perturbation approach:

Calculate phase space distribution without self effects. (Solve EOM.)

Calculate source terms of EM problem. ( Unperturbed motion.)

Solve EM problem for these source terms.

Motion: treat self effects like external fields.

Sample these fields at the coordinates (location and velocity) of the unperturbed 

motion.



Accelerator vs Cartesian Coordinates

The external magnetic field

this field is smooth (there are fringe fields)

energy and initial conditions of a reference particle

→ path length                          and reference trajectory 

external magnetic field in accelerator coordinates
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Linear Optics
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Density Functions

normalized gaussian 4d density ( )
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Tabulated and Analytic Functions
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We can calculate all derivatives of Js and v

(to cartesian or accelerator coordinates) with help of tabulated functions!



EM Problem: Retarded Potentials
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Integration via Accelerator Coordinates 
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Numerical Realization
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simultaneous integration of all potentials and all derivatives

, tV→ = −∇ − ∂ = ∇×E A B A

with

• needs a 2d integration for each X,Y,Z,t point

• independent (parallel) computation of different points

• it is advantageous to start with the x integration

• step width control is fairly simple

• singularity (a(S)→0) needs some care

• analytic approximation for large √… possible

• outer (S) integration is difficult



Sx Integration Range

S integration is difficult:

range for S < So is stretched

range for S > So is compressed

both parts might be of similar importance

integral for S → So might be singular

extreme stretch possible:

long compared to bunch length

fringe fields

element lengths

drift lengths

section length

beam line

observer

actual shape

retarded shape

example: uniform motion with β = 0.9
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S Integration with Step Width Control

o working horse (method for subintervals from A to B) 

o clever splitting of integration range into initial subintervals

• f.i. near-interval, far-interval, fringe-intervals, bend-interval etc

• individual interval properties as

integration method

substitution of integration parameter

error weight

o adaptive integration by splitting of intervals

• inheritance of interval properties

• error estimation (→ working horse)

• error criterion and refinement strategy 

global considerations

component considerations

noise

• abort criterion
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Gauss-Kronrod quadrature, moderate N

applicable to integrals that can be improper 

at the boundary

= global & component wise



Tracking with Perturbation
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initial condition (per particle)

unperturbed motion → EM sources

perturbed motion

solve linearized equation of motion

calculate beam dynamics properties

↓

as projected emittance, slice emittance, slice energy spread



Example

several setups have been calculated: 

• 4 magnet BC chicane

o Zeuthen benchmark BC, 500 MeV, 511 MeV, 5 GeV, 5.11 GeV

o XFEL CW BC2

o Flash2020 BC1, BC2

• T20 beamline with combinded function magnet (XFEL)

• undulator (Pitz)

1) calculation of EM quantities:

retarded potentials and derivatives have been calculated on a xsS-grid

typically 100 .. 1000 points in S direction (along structure)

typically 500 .. 1000 xs-gridpoints (on smallest rectangle around 4σ ellipse)

2) perturbation tracking with interpolated field

→ beam dynamics properties

however, I am only showing one few curves for one example



benchmark BC @ 5 GeV: scalar potential and E-field before 1st magnet, no vertical offset

complete calculation collective uniform motion approximation

horizontal optics: waist is at exit of BC → beam is convergent at entrance



horizontal optics:

waist at exitwaist at entrance



waist at entrancewaist at exit

complete calculation: different horizontal optics

frustrating: the neglected vertical optics can cause similar effects



waist at entrancewaist at exit

full beam parameters

relative mean energy η

projected emittance

horizontal phase space at exit

full

center slicex

x′

at exit due to self effect from “0” to S



waist at entrancewaist at exit

center slice parameters

relative slice energy spread

slice emittance

horizontal phase space at exit

full

center slicex

x′

at exit due to self effect from “0” to S


