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• Circular accelerators need dipole magnets to correct orbit distortions

• PETRA IV: ultra-low emittance synchrotron radiation source 

➔ fast orbit feedback system, corrector magnets with frequencies in kHz range necessary

• Strong eddy currents ➔ power losses, time delay, and field distortion

• Simulation challenging due to small skin depths and laminated yoke

➔ Need for technique to simplify simulations

INTRODUCTION

I N T R O D U C T I O N
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• Magnetoquasistatic PDE: 𝛻 × (𝜈( Ԧ𝑟 )𝛻 × Ԧ𝐴 Ԧ𝑟 ) + 𝑗𝜔𝜎( Ԧ𝑟) Ԧ𝐴( Ԧ𝑟) = Ԧ𝐽s( Ԧ𝑟)

• Replace reluctivity 𝜈( Ԧ𝑟) and conductivity 𝜎( Ԧ𝑟) in the laminated yoke with spatially 

constant tensors

𝜈( Ԧ𝑟) → ധ𝜈 =
1

8
𝜎c𝑑𝛿𝜔 1 + 𝑗

  nh( 1 + 𝑗 𝛿−1𝑑)

  nh2 1 + 𝑗 𝛿−1 Τ𝑑 2

1 0 0
0 1 0
0 0 0

+ 𝜈c

0 0 0
0 0 0
0 0 1

𝜎( Ԧ𝑟) → ധ𝜎 = 𝛾𝜎c

1 0 0
0 1 0
0 0 0

THEORY

H O M O G E N I Z A T I O N  T E C H N I Q U E
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Skin depth 𝛿 = Τ2 𝜔𝜎c𝜇c

Stacking factor 𝛾 =
𝑉c

𝑉Yoke

P. Dular et al., 2003

L. Krählenbühl et al., 2004

H. De Gersem et al., 2012



• Frequency-dependent, complex-valued and anisotropic materials can be 

implemented in LF frequency domain solver of CST Studio Suite®

• Homogenization captures losses due to eddy currents induced by in-plane 

and perpendicular flux components

• Homogenization is valid also for high frequencies, i.e., 𝛿 ≪ 𝑑

• Restriction to frequency domain simulations

• Non-linear material properties and hysteresis are neglected

APPLICATION

H O M O G E N I Z A T I O N  T E C H N I Q U E
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• Iron yoke: length = 40 mm, lamination thickness = 1.83 mm

• Copper beam pipe: thickness = 0.5 mm, length = 140 mm

• Coils: current = 10 A (peak), # turns = 250 

• Frequency domain simulation via CST Studio Suite®

MODEL DESCRIPTION

T O Y  M O D E L
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• Strong mesh dependence of power losses at 

higher frequencies 

➔ Obtaining reliable results is difficult 

➔ Need for simplified model

SIMULATION OF THE FULL 
MODEL

T O Y  M O D E L
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# Tetrahedra 4.2 ⋅ 104 4.0 ⋅ 105 1.2 ⋅ 106 3.4 ⋅ 106 7.7 ⋅ 106

Simulation time 2 m n 20 m n 1 h 7.5 h 21.5 h



• Good approximation of losses in yoke & beam pipe 

(max. relative error 4 %) 

• Simulation time reduced from several hours to 4 min

HOMOGENIZED VS. FULL 
MODEL

T O Y  M O D E L
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HOMOGENIZED VS. FULL 
MODEL

T O Y  M O D E L
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Multipole coefficient Average rel. error

Dipole 1 %

Quadrupole 5 %

Sextupole 2 %

• Homogenization technique 

yields accurate approximation 

of multipole coefficients                               

➔ Aperture field accurately 

represented 
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• Dipole corrector with octupole-like design

• Coils: 

• 4 main coils: current = 27.4 A (peak), # turns = 53

• 4 auxiliary coils: current = 27.4 A (peak), # turns = 22 

• Iron yoke: 

• Diameter = 580 mm, length = 90 mm

• Lamination thickness = 0.5 mm         

• At first no beam pipe      

MODEL DESCRIPTION

S T A N D - A L O N E  C O R R E C T O R  M A G N E T  
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580 mm

580 mm

Design by A. Aloev (DESY),

inspired by APS

auxiliary coil main coil



• Frequency domain simulation via CST Studio Suite®

• Three symmetry planes, test frequencies 𝑓 = 10 Hz, 100 Hz, 500 Hz, 1 kHz

• Long simulation times even for relatively coarse meshes  

• Finest mesh: # tetrahedra = 2.3 ⋅ 106
➔ simulation time = 26 h

• Skin depth cannot be resolved ➔ power loss still mesh-dependent

SIMULATION OF THE FULL 
MODEL

S T A N D - A L O N E  C O R R E C T O R  M A G N E T  

06.06.2023 14Dept. of Electrical Engineering and Information Technology | TEMF | Jan-Magnus Christmann



HOMOGENIZED VS. FULL 
MODEL

S T A N D - A L O N E  C O R R E C T O R  M A G N E T  
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Multipole 

coefficient

Average

rel. deviation

Dipole 1 %

14-pole 1 %

18-pole 3 %

• Similar power losses

• Good agreement in multipole coefficients

• Simulation time reduces from 26 h to 5 min

➔ Homogenized model can be used for further studies

Keep in mind:              

Power losses in full model 

are still mesh-dependent !



LOSSES FOR DIFFERENT 
LAMINATION THICKNESSES

S T A N D - A L O N E  C O R R E C T O R  M A G N E T  
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𝑓(Hz)
Eddy current losses (W)

𝑑 = 0.2 mm 𝑑 = 0.3 mm 𝑑 = 0.4 mm 𝑑 = 0.5 mm

10 5.8 ⋅ 10−1 6.5 ⋅ 10−1 7.6 ⋅ 10−1 9.0 ⋅ 10−1

100 2.8 ⋅ 101 3.4 ⋅ 101 4.6 ⋅ 101 6.0 ⋅ 101

500 4.4 ⋅ 102 6.2 ⋅ 102 9.0 ⋅ 102 1.2 ⋅ 103

1000 1.4 ⋅ 103 2.1 ⋅ 103 3.1 ⋅ 103 4.0 ⋅ 103

10000 4.4 ⋅ 104 4.9 ⋅ 104 5.5 ⋅ 104 5.8 ⋅ 104

30000 1.4 ⋅ 105 1.6 ⋅ 105 1.6 ⋅ 105 1.6 ⋅ 105

65000 3.5 ⋅ 105 3.6 ⋅ 105 3.6 ⋅ 105 3.5 ⋅ 105

• Use homogenization to

investigate losses up to 65 kHz

• Vary 𝑑 = 0.2 − 0.5 mm, keep

𝛾 ≈ 0.91 constant 

• At low frequencies, the 

lamination thickness has 

strong influence on the losses

• At very high frequencies, the 

lamination thickness has no 

influence on the losses

Simulation uses the same   

current for all frequencies !



LONGITUDINAL MULTIPOLE 
DISTRIBUTION (STATIC)

S T A N D - A L O N E  C O R R E C T O R  M A G N E T
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• Compute multipole coefficients along longitudinal axis of the magnet

• Comparison with DESY for static case ➔ good agreement



LONGITUDINAL MULTIPOLE 
DISTRIBUTION (TIME-HARMONIC)

S T A N D - A L O N E  C O R R E C T O R  M A G N E T  
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• Updated # turns & current:

➔ Main coils: 65 turns, 15 A
➔ Aux. coils: 27 turns, 15 A

• 65 kHz vs. 1 Hz:

➔Int. dipoles: −57 %
➔Int. 14-poles: −52 %
➔Int. 18-poles: −54 %

𝑓 (Hz) Int. dipole (mT m) Int. 14-pole (μT m) Int. 18-pole (μT m)

1 11.6 316.4 −30.3

1000 10.7 300.4 −28.6

10000 7.6 229.0 −21.5

65000 5.0 150.3 −13.9



INCLUSION OF BEAM PIPE

S T A N D - A L O N E  C O R R E C T O R  M A G N E T
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𝑓 (Hz) Int. dipole (mT m) Int. 14-pole (μT m) Int. 18-pole (μT m)

1 11.5 313.3 −30.6

1000 10.5 292.7 −28.1

10000 3.6 122.6 −8.3

65000 0.4 57.4 4.3

• General shape similar to model without beam pipe

• 65 kHz vs. 1 Hz:

➔Int. dipoles: −97 % (−57 %)

➔Int. 14-poles: −82 % (−52 %)
➔Int. 18-poles change sign (−54 %)

𝑦

𝑥



• Up to 𝒇 ≈ 𝟏 𝐤𝐇𝐳: Only minor differences between the two models

• For 𝒇 >> 𝟏 𝐤𝐇𝐳: Strong attenuation of dipole field due to eddy currents in beam pipe 

• At higher frequencies, beam pipe leads to greater effective length of the magnet

INCLUSION OF BEAM PIPE

S T A N D - A L O N E  C O R R E C T O R  M A G N E T
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INTEGRATED TRANSFER 
FUNCTION AND FIELD LAG

S T A N D - A L O N E  C O R R E C T O R  M A G N E T  
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ITF(𝑓) =
𝑙 𝐵1(𝑧, 𝑓)  𝑧

𝑙 𝐵1(𝑧, 𝑓 = 1Hz)  𝑧

Yoke 

material
3 dB bandwidth 

Phase shift at 

bandwidth

Iron 7 kHz 38°

M-19 Steel 10 kHz 46°

1010 Steel 7 kHz 38°

Yoke      

material 

Average relative 

permeability*

Conductivity 

(MS/m)

Iron 5690 10.4

M-19 Steel 4166 1.9

1010 Steel 2780 6.993

* Values are computed from results of static simulations with non-linear BH-curve

• Beam pipe is made out of 316 LN SS (𝜎 = 1.351 ⋅ 106, 𝜇r = 1.01)
and has an outer radius of 𝟏𝟏 𝐦𝐦 and a thickness of 𝟏 𝐦𝐦
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MODEL DESCRIPTION

C O R R E C T O R  M A G N E T  W I T H  N E I G H B O R I N G  Q U A D R U P O L E S
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• Corrector magnet (FC) with two neighboring quadrupole magnets (PQB & PQC)

• AC currents in corrector coils, DC currents in quadrupole coils

• All yokes are 1010 steel, PQB quadrupoles have Vacoflux-50 poles 

• Quadrupole yokes are solid, corrector yoke is laminated

• Beam pipe made out of 316LN SS with outer radius of 11 mm and thickness of 1 mm

• Distance between corrector yoke and quadrupole yokes ~ 11.5 cm

PQBFCPQC

𝑧/mm
Eval. limits: 

-400…+800 mm 

-167.05

635.8

Material 
Average Relative 

Permeability*

Conductivity 

(MS/m)

1010 Steel (PQC) 1450 6.993

1010 Steel (PQB) 1810 6.993

Vacoflux-50 (PQB) 5000 2.38

1010 Steel (FC) 2780 6.993

Coils Ampere turns

PQB 5728.1 A 

FC (main) 975 A 

FC (aux.) 405 A 

PQC 5659.5 A 

* Values are computed from results of static simulations with non-linear BH-curve



• Very similar results as for the model without 

neighboring quadrupoles

• Main difference: at low frequencies, a ~0.5  B
peak is occurring in the ITF of the model with 

the neighboring quadrupoles

INTEGRATED TRANSFER 
FUNCTION AND FIELD LAG

C O R R E C T O R  M A G N E T  W I T H  N E I G H B O R I N G  Q U A D R U P O L E S
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Model without

beam pipe

Model with

beam pipe

3 dB bandwidth 20 kHz 7 kHz

Phase shift at 

bandwidth 
11° 39°



DIPOLE COEFFICIENTS ALONG 
THE AXIS

C O R R E C T O R  M A G N E T  W I T H  N E I G H B O R I N G  Q U A D R U P O L E S
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Simulation with 

beam pipe

• At low frequencies (𝑓 ≤ 100 Hz), we observe a parasitic dipole component inside the quadrupole magnets

• This dipole component is due to eddy currents induced in the quadrupole yokes by the AC corrector field

➔ Peak in ITF at low frequencies 

➔ Shift of the center of mass ( ~ 0.5 cm at most) 
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• Validation of homogenization technique using toy model

➔ Good approximation of multipoles and power losses

➔ Simulation time reduced from several hours to a few minutes

• Application to corrector magnet model

• Power losses for different lamination thicknesses

• Longitudinal multipole distributions 

• Integrated transfer function and field lag

• Cross-talk with neighboring magnets

• Ongoing investigations: 

• Simulations with different variations of the beam pipe and cooling channels 

• Approximate treatment of non-linear material properties

CONCLUSION/OUTLOOK

C O N C L U S I O N / O U T L O O K
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Homogenization enables us to study this 

over the frequency range of interest from 

DC up to 65 kHz 
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