

FINITE ELEMENT SIMULATION OF FAST CORRECTOR MAGNETS FOR PETRA IV

Jan-Magnus Christmann¹, Moritz von Tresckow¹, Herbert De Gersem¹, Alexander Aloev², Sajjad H. Mirza², Sven Pfeiffer², and Holger Schlarb²

¹TEMF, TU Darmstadt, Germany

²DESY, Hamburg, Germany

PETRA IV Conceptual Design Report

Dept. of Electrical Engineering and Information Technology | TEMF | Jan-Magnus Christmann

Corrector Magnet with Neighboring Quadrupoles

INTRODUCTION

- Circular accelerators need dipole magnets to correct orbit distortions
- **PETRA IV**: ultra-low emittance synchrotron radiation source
- → fast orbit feedback system, corrector magnets with frequencies in kHz range necessary
- Strong eddy currents → power losses, time delay, and field distortion
- Simulation challenging due to small skin depths and laminated yoke
- → Need for technique to simplify simulations

THEORY

- Magnetoquasistatic PDE: $\nabla \times (\nu(\vec{r}) \nabla \times \underline{\vec{A}}(\vec{r})) + j\omega\sigma(\vec{r})\underline{\vec{A}}(\vec{r}) = \underline{\vec{J}}_{s}(\vec{r})$
- Replace reluctivity $v(\vec{r})$ and conductivity $\sigma(\vec{r})$ in the laminated yoke with spatially constant tensors

$$\nu(\vec{r}) \to \bar{\underline{\nu}} = \frac{1}{8} \sigma_{\rm c} d\delta\omega (1+j) \frac{\sinh((1+j)\delta^{-1}d)}{\sinh^{2}((1+j)\delta^{-1}d/2)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \nu_{\rm c} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\sigma(\vec{r}) \to \bar{\sigma} = \gamma \sigma_{\rm c} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Skin depth $\delta = \sqrt{2/\omega\sigma_{\rm c}\mu_{\rm c}}$
Stacking factor $\gamma = \frac{V_{\rm c}}{V_{\rm Yoke}}$

APPLICATION

- Frequency-dependent, complex-valued and anisotropic materials can be implemented in LF frequency domain solver of CST Studio Suite[®]
- Homogenization captures losses due to eddy currents induced by in-plane and perpendicular flux components
- Homogenization is valid also for high frequencies, i.e., $\delta \ll d$
- Restriction to frequency domain simulations
- Non-linear material properties and hysteresis are neglected

TECHNISCHE UNIVERSITÄT DARMSTADT

MODEL DESCRIPTION

- Iron yoke: length = 40 mm, lamination thickness = 1.83 mm
- **Copper beam pipe:** thickness = 0.5 mm, length = 140 mm
- **Coils**: current = 10 A (peak), # turns = 250
- Frequency domain simulation via CST Studio Suite[®]

TOY MODEL

SIMULATION OF THE FULL MODEL

- Strong mesh dependence of power losses at higher frequencies
 - → Obtaining reliable results is difficult
 - ➔ Need for simplified model

TOY MODEL

HOMOGENIZED VS. FULL MODEL

- Good approximation of losses in yoke & beam pipe (max. relative error 4 %)
- Simulation time reduced from several hours to 4 min

TOY MODEL

HOMOGENIZED VS. FULL MODEL

al Quadrupole Coefficients		Normal Sextupole Coefficients
• Full model • Homogenized model	20	Full model Homogenized model
	Lu 16	
•	14	
	Ŭ 12	
•	10	
00 400 600 800 1,000	0	200 400 600 800 1,000
Frequency (Hz)		Frequency (Hz)

Ho	omogenization technique
yie	elds accurate approximation
of	multipole coefficients
→	Aperture field accurately
re	presented

.

Multipole coefficient	Average rel. error
Dipole	1 %
Quadrupole	5 %
Sextupole	2 %

Corrector Magnet with Neighboring Quadrupoles

MODEL DESCRIPTION

- Dipole corrector with octupole-like design
- Coils:
 - 4 main coils: current = 27.4 A (peak), # turns = 53
 - 4 auxiliary coils: current = 27.4 A (peak), # turns = 22
- Iron yoke:
 - Diameter = 580 mm, length = 90 mm
 - Lamination thickness = 0.5 mm
- At first **no beam pipe**

Design by A. Aloev (DESY), inspired by APS

SIMULATION OF THE FULL MODEL

- Frequency domain simulation via CST Studio Suite[®]
- Three symmetry planes, test frequencies f = 10 Hz, 100 Hz, 500 Hz, 1 kHz
- Long simulation times even for relatively coarse meshes
- Finest mesh: # tetrahedra = $2.3 \cdot 10^6$ \rightarrow simulation time = 26 h
- Skin depth cannot be resolved → power loss still mesh-dependent

HOMOGENIZED VS. FULL MODEL

Eddy Current Losses in the Yoke

Multipole coefficient	Average rel. deviation
Dipole	1 %
14-pole	1 %
18-pole	3 %

Keep in mind: Power losses in full model are still mesh-dependent !

- Similar power losses
- Good agreement in multipole coefficients
- Simulation time reduces from 26 h to 5 min
- → Homogenized model can be used for further studies

LOSSES FOR DIFFERENT LAMINATION THICKNESSES

£(⊔→)	Eddy current losses (W)				
) (nz)	d = 0.2 mm	d = 0.3 mm	d = 0.4 mm	d = 0.5 mm	
10	$5.8 \cdot 10^{-1}$	$6.5 \cdot 10^{-1}$	$7.6 \cdot 10^{-1}$	$9.0 \cdot 10^{-1}$	
100	$2.8\cdot10^{1}$	$3.4\cdot10^{1}$	$4.6\cdot10^{1}$	$6.0\cdot10^{1}$	
500	$4.4\cdot 10^2$	$6.2 \cdot 10^{2}$	$9.0\cdot10^2$	$1.2 \cdot 10^{3}$	
1000	$1.4 \cdot 10^{3}$	$2.1 \cdot 10^{3}$	$3.1\cdot10^3$	$4.0 \cdot 10^{3}$	
10000	$4.4\cdot 10^4$	$4.9\cdot 10^4$	$5.5\cdot 10^4$	$5.8\cdot 10^4$	
30000	$1.4\cdot 10^5$	$1.6\cdot 10^5$	$1.6\cdot 10^5$	$1.6\cdot 10^5$	
65000	$3.5\cdot10^5$	$3.6\cdot10^5$	$3.6\cdot10^5$	$3.5 \cdot 10^5$	

Simulation uses the same current for all frequencies ! Use homogenization to investigate losses up to 65 kHz

- Vary d = 0.2 0.5 mm, keep $\gamma \approx 0.91$ constant
- At low frequencies, the lamination thickness has strong influence on the losses
- At very high frequencies, the lamination thickness has no influence on the losses

LONGITUDINAL MULTIPOLE DISTRIBUTION (STATIC)

- Compute multipole coefficients along longitudinal axis of the magnet
- Comparison with DESY for static case → good agreement

LONGITUDINAL MULTIPOLE DISTRIBUTION (TIME-HARMONIC)

f (Hz)	Int. dipole (mT m)	Int. 14-pole (µT m)	Int. 18-pole (µT m)
1	11.6	316.4	-30.3
1000	10.7	300.4	-28.6
10000	7.6	229.0	-21.5
65000	5.0	150.3	-13.9

- Updated # turns & current:
- → Main coils: 65 turns, 15 A
- → Aux. coils: 27 turns, 15 A
- 65 kHz vs. 1 Hz:
 →Int. dipoles: -57 %
 →Int. 14-poles: -52 %
 →Int. 18-poles: -54 %

Dept. of Electrical Engineering and Information Technology | TEMF | Jan-Magnus Christmann

INCLUSION OF BEAM PIPE

f (Hz)	Int. dipole (mT m)	Int. 14-pole (µT m)	Int. 18-pole (μT m)
1	11.5	313.3	-30.6
1000	10.5	292.7	-28.1
10000	3.6	122.6	-8.3
65000	0.4	57.4	4.3

- General shape similar to model without beam pipe ٠
- 65 kHz vs. 1 Hz: •

40

 $z \,(\mathrm{mm})$

20

- →Int. dipoles: -97% (-57%)
- →Int. 14-poles: -82 % (-52 %)
- \rightarrow Int. 18-poles change sign (-54 %)

3

2

0

0

Coefficient (mT)

INCLUSION OF BEAM PIPE

- Up to $f \approx 1 \text{ kHz}$: Only minor differences between the two models
- For f >> 1 kHz: Strong attenuation of dipole field due to eddy currents in beam pipe
- At higher frequencies, beam pipe leads to greater effective length of the magnet

INTEGRATED TRANSFER FUNCTION AND FIELD LAG

• Beam pipe is made out of 316 LN SS ($\sigma = 1.351 \cdot 10^6$, $\mu_r = 1.01$) and has an outer radius of 11 mm and a thickness of 1 mm

ITE(f) -	$\int_l B_1(z,f) \mathrm{d}z$
111())=	$\int_{I} B_1(z, f = 1 \text{Hz}) \mathrm{d}z$

Yoke material	3 dB bandwidth	Phase shift at bandwidth
Iron	7 kHz	38°
M-19 Steel	10 kHz	46°
1010 Steel	7 kHz	38°

Yoke material	Average relative permeability*	Conductivity (MS/m)
Iron	5690	10.4
M-19 Steel	4166	1.9
1010 Steel	2780	6.993

* Values are computed from results of static simulations with non-linear BH-curve

Toy Model

3

Stand-Alone Corrector Magnet

MODEL DESCRIPTION

- Corrector magnet (FC) with two neighboring quadrupole magnets (PQB & PQC)
- AC currents in corrector coils, DC currents in quadrupole coils
- All yokes are 1010 steel, PQB quadrupoles have Vacoflux-50 poles
- Quadrupole yokes are solid, corrector yoke is laminated
- Beam pipe made out of 316LN SS with outer radius of 11 mm and thickness of 1 mm
- Distance between corrector yoke and quadrupole yokes ~ 11.5 cm

Material	Average Relative Permeability*	Conductivity (MS/m)	Coils	Ampere turns
1010 Steel (PQC)	1450	6.993	PQB	5728.1 At
1010 Steel (PQB)	1810	6.993	FC (main)	975 At
Vacoflux-50 (PQB)	5000	2.38	FC (aux.)	405 At
1010 Steel (FC)	2780	6.993	PQC	5659.5 At

* Values are computed from results of static simulations with non-linear BH-curve

INTEGRATED TRANSFER FUNCTION AND FIELD LAG

Integrated Transfer Function -5Phase (deg) ITF (dB) -15**B** 3 Magnets with beam pipe 1 Magnet with beam pipe -20 10^{3} 10^{4} 10^{0} 10^{2} 10^{5} 10^{1} Frequency (Hz)

Field Lag w.r.t. Current

	Model without beam pipe	Model with beam pipe
3 dB bandwidth	20 kHz	7 kHz
Phase shift at bandwidth	11°	39°

- Very similar results as for the model without neighboring quadrupoles
- Main difference: at low frequencies, a ~0.5 dB peak is occurring in the ITF of the model with the neighboring quadrupoles

DIPOLE COEFFICIENTS ALONG THE AXIS

- At low frequencies ($f \le 100 \text{ Hz}$), we observe a parasitic dipole component inside the quadrupole magnets
- This dipole component is due to eddy currents induced in the quadrupole yokes by the AC corrector field
- → Peak in ITF at low frequencies
- \rightarrow Shift of the center of mass (~ 0.5 cm at most)

CONCLUSION/OUTLOOK

Validation of homogenization technique using toy model

- → Good approximation of multipoles and power losses
- → Simulation time reduced from several hours to a few minutes
- Application to corrector magnet model
 - Power losses for different lamination thicknesses
 - Longitudinal multipole distributions
 - Integrated transfer function and field lag
 - Cross-talk with neighboring magnets
- Ongoing investigations:
 - Simulations with different variations of the beam pipe and cooling channels
 - Approximate treatment of non-linear material properties

REFERENCES

REFERENCES

[1] PETRA IV Conceptual Design Report.

[2] K. Wille, *Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen*. Stuttgart, Germany: Teubner, 1992.

[3] P. Dular et al., "A 3-D Magnetic Vector Potential Formulation Taking Eddy Currents in Lamination Stacks Into Account," *IEEE Trans. Magn.*, vol. 39, no. 3, pp. 1424-1427, May 2003.

[4] L. Krähenbühl et al., "Homogenization of Lamination Stacks in Linear Magnetodynamics," *IEEE Trans. Magn.*, vol. 40, no. 2, pp. 912 - 915 Mar. 2004.

[5] H. De Gersem, S. Vanaverbeke, and G. Samaey, "Three-Dimensional-Two-Dimensional Coupled Model for Eddy Currents in Laminated Iron Cores," *IEEE. Trans. Magn.*, vol. 48, no. 2, pp.815 – 818, Feb. 2012.