Coupled Space Charge and Wakefield Simulation of a Retracted Gun J. Christ and E. Gjonaj jonas.christ@tu-darmstadt.de

DESY-TEMF Collaboration Meeting June 1 2023, Hamburg, Germany

The work of J. Christ is supported by the DFG through the Graduiertenkolleg 2128 "Accelerator Science and Technology for Energy Recovery Linacs" (AccelencE).

TECHNISCHI UNIVERSITÄT

DARMSTADI

Outline

- Retracted Cathode
- Scattered Field Formulation
- Coupling to Beam Dynamics
- Results

Retracted Cathode

- Idea of retracted cathode: built-in RF focusing for emittance compensation
 - Strong coupling between wakefields and space-charge interaction
 - Kick-wise application of wakefields is inaccurate
 - Full-scale EM PIC not feasible

Credit: Bazyl, Gjonaj; Vennekate

Strong coupling of space-charge and wakefield of \rightarrow Scattered field formulation: $E = E_i + E_s$ Employ available specialized solvers • Space-charge: Green function in rest frame

- Wakefields: FIT in moving window
- For arbitrary particle dynamics

Idea

- Avoids current interpolation step (in PIC)
- Allows better resolution of space-charge fields (than PIC)

 $E_{\rm s} + E_{\rm i}$ at particle positions

Strong coupling of space-charge and wakefield calculations

TECHNISCHE UNIVERSITÄT DARMSTADT

Scattered Field Formulation

TU Darmstadt | Institute TEMF | Jonas Christ, Erion Gjonaj | 5

Scattered Field Formulation in PBCI

Staircase approximation

• Discretization of Faraday's eq. at a PEC boundary

$$\frac{d}{dt} \binom{h_{\rm s}}{e_{\rm s}} = \begin{pmatrix} 0 & -M_{\mu}^{-1}C \\ M_{\varepsilon}^{-1}C^{T} & 0 \end{pmatrix} \binom{h_{\rm s}}{e_{\rm s}} - \binom{M_{\mu}^{-1}j_{\rm mag}}{0}$$

• Equivalent magnetic current at the boundary

 $j_{\rm mag} = C I_l e_{\rm i}$

- With local interpolation matrix $I_l = \begin{cases} -1 & \text{if edge in PEC} \\ 0 & \text{else} \end{cases}$
- Material matrices remain the same as for PECboundaries

Scattered Field Formulation in PBCI II

PEC

Conformal approximation

- Change computation of magnetic current only
- Two variants:
 - 1. Reduction of incident field to conformal lengths / areas

$$e_j = e_{s,j} + \frac{l_{\text{cut},j}}{l_j} e_{i,j} \qquad b_k = b_{s,k} + \frac{A_{\text{cut},k}}{A_k} b_{i,k}$$

$$j_{\text{mag},k} = \sum C_{kj} \frac{l_{\text{cut},j}}{l_j} e_{\mathbf{i},j} - \frac{A_{\text{cut},k}}{A_k} C_{kj} \frac{e_{\mathbf{i},j}}{e_{\mathbf{i},j}}$$

2. Interpolation to cut edge center $j_{mag,k} = -L_k t_k \cdot E_i(r_k)$ r_k e_i $y \downarrow x$ Primary FIT face

l_{cut,j}

 $e_{\mathrm{S},i}$

J_{mag,k}

 $h_{\mathrm{s},k}$

 A_{ν}

Scattered Field Formulation in PBCI III

TECHNISCHE UNIVERSITÄT DARMSTADT

TU Darmstadt | Institute TEMF | Jonas Christ, Erion Gjonaj | 8

Coupling: PBCI + REPTIL

Coupling: PBCI + REPTIL II

Results: Retracted Cathode

Idea of retracted cathode: built-in RF focusing to compensate space-charge forces

Coupled simulation yields the wakefield

Results: Retracted Cathode II

- No back-coupling on trajectory
- Particle-wise momentum kick computation

TU Darmstadt | Institute TEMF | Jonas Christ, Erion Gjonaj | 12

Results: Retracted Cathode III

- Cathode with retraction by 0.45 mm
 - No back-coupling on trajectory
 - Particle-wise momentum kick computation

 $dp_i = q_i \int E_s + v_i \times B_s \, \mathrm{d}t$

- Wakefields influence transv. emittance
- SES remains unaffected
- Dominant wakefields from iris and pipe transition

Discussion & Outlook

- Scattered field formulation for FIT
- Successful implementation in wakefield code PBCI, coupled with space charge solver REPTIL
- First results for retracted cathode
- Outlook
 - Back-coupling of wakefields directly onto the particles
 - Surface impedance BC, adaptive time steps, 2D field maps
 - CSR wakefields in the bunch compressor

