

SHUNT IMPEDANCE SIMULATIONS FOR AN IVU AT PETRA-4

CONTENT

- Geometry
- Simulation procedure
- Results
- Summary and outlook

Exit

GEOMETRY

Entry Grey: stainless steel 1.4e6 S/m Body Yellow: PEC

GEOMETRY

GEOMETRY

- Three independent solver
 - CST wakefield
 - CST eigenmode
 - FELIS (frequency domain impedance)
- Centered beam does not excite modes
 - Offset in horizontal direction has no impact
 - Small displacement in vertical direction (0.5mm)
- Model almost symmetric
 - Neglect cooling pipes
 - Mirror vacuum ports
 - Neglect small asymmetry in exit geometry

CST Wakefield Solver

- Geometry approximation
 - Entry taper simplied
 - Cutoff frequency ≈ 2 GHz
 - Mesh
 - Tapers
 - Tank
- Wake potential -> impedance
 - cos² window
 - DFT
- Limitation: runtime

FELIS

- Impedance Solver in FD + FFS
- Geometry approximation
 - No additional simplification at entry/exit
 - Ind order elements
- High order basis functions
- Materials
 - Only one surface impedance due to FFS
- Limitation: memory, (runtime)

FELIS

- Impedance Solver in FD + FFS
- Geometry approximation
 - No additional simplification at entry/exit
 - 2nd order elements
- High order basis functions
- Materials
 - Only one surface impedance due to FFS
- Limitation: memory, (runtime)

Giulio Antonini, SPICE Equivalent Circuits of Frequency-Domain Responses

CST Eigenmode Solver

- No modes propagating in the beam pipes
 - Direct integration

$$V_i = \int_a^b E_{z,i}(z) e^{j\omega_i z/c_0} dz$$

Longitudinal shunt impedances

$$R_{\mathrm{s},i} = \frac{|V_i|^2 Q_i}{2W_i \omega_i}$$

Limitation: memory

Impedances Comparison (PEC + steel)

Shunt Impedances Comparison (PEC + steel)

Shunt Impedances Comparison (PEC + steel)

Q Comparison (PEC + steel)

R/Q Comparison (PEC + steel)

RESULTS

Effect of Materials on Zs

CST Wakefield Solver

Transvere Shunt Impedances

Transverse Shunt Impedances

- Similar mode pattern and magnitude
- Critical for stability: modes up to 300 MHz
- Damping scheme could be required (ferrites)

CONCLUSIONS

- Confident results up to 800MHz
 - f_0 (all three solver)
 - Shunt impedance (all three solver)
 - Q (eigenmode, impedance solvers)
 - R/Q (eigenmode, impedance solvers)
- Higher frequencies demand solver improvements
 - TD: geometry approximation, integration length
 - EM, FD: memory consumption
- Motivates development of advanced solvers

OUTLOOK

- Transverse shunt impedances
- Higher frequencies
- Geometry
 - Cooling
 - Flexible taper
 - Variable gap width
- Material properties
- Loss / cooling