Trapped mode analysis for the PETRA-4 IVUs

Frederik Quetscher, Erion Gjonaj, Herbert De Gersem

TECHNISCHE UNIVERSITÄT DARMSTADT

Problem Description

Task

- Identification of modes, resonance frequencies and quality factors
- Creation of an accurate and efficient model
- Measurement of S-parameters as reference
- Work in progress

Content

- Problem Description
- Geometry
- Eigenmode Analysis
- Q-Factors
- Comparison with Measurement
- Periodic Model
- Conclusion

Orginal CAD model

Orginal CAD model

Orginal CAD model

Entry

6

Exit

Entry and exit sections

Content

- Problem Description
- Geometry
- Eigenmode Analysis
- Q-Factors
- Comparison with Measurement
- Periodic Model
- Conclusion

Simulation procedure

- Eigenmode solver in 3D
 - Efficient
- S-parameter simulation
 - Confirm eigenmode solution

Field distribution

- Ground mode at 234MHz, gap=40mm
- Strong field in the "plate capacitor"
- Significant field concentration between the pillars

Eigenmode Analysis

E-field

Mesh convergence

- Eigenmode solver
- Ground mode, gap=5mm
- #tets=20k...2M

■ ≈0.5% error at 15 cells per wavelength

Mesh convergence

- Eigenmode solver
- Ground mode, gap=40mm
- #tets=20k...2M
- ≈0.2% error at 15 cells per wavelength

Gap sweep

Resonance frequencies rising monotonously

S-parameter simulation

 Perfect agreement with eigenvalue solver (error < 1%) Resonance frequencies of ground mode

Gap	5mm	40mm
Eigen.	98.2MHz	233.9MHz
Driven	98.6MHz	234.3MHz

Q-Factors

- Gap=5mm
- Ground mode
- Eigenmode solution
 - Power-loss method
 - Q₀=2300
- Frequency driven
 - Lossy metals (surface impedance)
 - Q_L=600
 - Q₀=2400
 - Same for different coupler / antennas
- Good agreement

Calculation of Q₀ in the overcoupled case $\beta_1 = \frac{1+|S_{11}|}{1-|S_{11}|}, \ \beta_2 = \frac{|S_{21}|^2}{1-|S_{11}|^2-|S_{21}|^2}$ $Q_0 = Q_L(1+\beta_1+\beta_2)$

Content

- Problem Description
- Geometry
- Eigenmode Analysis
- Q-Factors
- Comparison with Measurement
- Periodic Model
- Conclusion

Comparison with Measurement

Setup

 Measurement from M. Ebert, P. Fuchs, P. Vagin, A. Schoeps (16.12.18)

20.10.2022 TU Darmstadt | Institut für Teilchenbeschleunigung und Elektromagnetische Felder (TEMF) | Frederik Quetscher 20

Comparison with Measurement

Resonance frequency

- Ground mode
- Good agreement at small gaps
- Larger error at large gaps

Gap	5mm	25mm	40mm
Measurement	100	170	177
Simulation	99	190	234
Relative error	1%	12%	32%

Comparison with Measurement

Q-factor comparison

- Large discrepancy
- Measurement setup?
 - Assumption: measured Q is Q_L
 - In simulation $Q_L > 600$
- Material parameters?
 - NdFeB magnets + CoFeV
 - Mostly covered by the copper foil
- Ferrite dampers installed?

Content

- Problem Description
- Geometry
- Eigenmode Analysis
- Q-Factors
- Comparison with Measurement
- Periodic Model
- Conclusion

Periodic Model

Geometry

Periodic Model

∑×

Conclusion

- Detailed model for PETRA-4 IVU's trapped mode analysis
- Resonance frequencies
 - Good agreement at smaller gaps
 - Worse agreement at larger gaps
- Quality factor
 - No agreement
 - Similar result for the SLAC-IVUs, PRAB 2019
- Open questions regarding the model
 - Material properties?
 - Ferrite dampers?
 - New experiments?

