THz SASE FEL at PITZ: Results from first lasing runs

Photo Injector Test facility at DESY in Zeuthen:

Development of high-power tunable accelerator-based THz source for the European XFEL

➔ Proof-of-Principle experiment

Mikhail Krasilnikov for the THz@PITZ Team DESY-TEMF meeting, Darmstadt, 20.10.2022

HELMHOLTZ

THz SASE FEL source for pump-probe experiments at European XFEL

PITZ-like accelerator can enable high-power, tunable, synchronized THz radiation

Proof-of-principle experiment on THz SASE FEL at PITZ

Using LCLS-I undulators (available on loan from SLAC)

Some Properties of the LCLS-I undulator

Properties	Details
Туре	planar hybrid (NdFeB)
K-value	3.585 (3.49)
Support diameter / length	30 cm / 3.4 m
Vacuum chamber size	11 mm x 5 mm
Period length	30 mm
Periods / a module	113 periods

Proposal "Conceptual design of a THz source for pump-probe experiments at the European XFEL based on a PITZ-like photo injector" has been supported by the E-XFEL Management Board \rightarrow dedicated R&D activities at PITZ \rightarrow Proof-ofprinciple experiments (2019-2023)

λ_{rad}~100μm → ~**17MeV/c**

Main challenges:

- Space charge effects
- Strong undulator (vertical) focusing
 + horizontal gradient
- "Full physics" might have to be considered
- Waveguide effect
- Wakefields: geometric and resistive wall effects

Reference particle trajectories in the undulator with horizontal gradient 10 vacuum E 0 € -10 <> -20 0 chamber border —no correction —with initial angle with correction coil -30 0.5 1.5 2.5 3 2 z, m

Start-to-end simulation

Proof-of-principle experiment on THz SASE FEL at PITZ

- Astra: Photocathode to Undulator entrance—
- Genesis 1.3: FEL simulation (input from Astra)

Case	100 um	60um	Unit
Momentum	17	22	MeV/c
Pulse energy	493.1±109.8	294.8±83.8	μJ
Arrival time jitter	1.5	1.1	ps
Center wavelength	101.8±0.7	60.3±0.3	μm
Spectrum width	2.0±0.4	1.0±0.2	μm

Summary of Genesis 1.3 simulation

NB: Genesis simulations in free space, no vacuum chamber (waveguide effect neglected)

Courtesy: X.-K. Li

THz SASE FEL at PITZ: Realization

PITZ upgrade for the proof-of-principle experiment

Procedure for beam matching into the LCLS-I undulator

X. Li et al., "Matching of a Space-Charge Dominated Beam into the Undulator of the THz SASE FEL at PITZ", in Proc. 12th Int. Particle Accelerator Conf. (IPAC'21), Campinas, Brazil, May 2021, pp. 3244-3247.

Figure 4: Backward tracking of the electron bunch starting from the undulator entrance.

Figure 5: Matching procedure (left) and transport of the electron bunch under the matching condition (right).

THz SASE FEL at PITZ

Electron beam matching for lasing

DESY. | THz SASE FEL at PITZ | M. Krasilnikov, DESY-TEMF meeting, 20.10.2022

THz SASE FEL at PITZ: THz diagnostics setup for gain curve

Startup: pyroelectric detectors with collector cones

THz SASE FEL at PITZ: Gain Curves

First Characterization: FEL Gain Curves with HIGH3.Scr2 mirror

- Lasing at ~100μm 🗲 high gain THz SASE FEL at PITZ!
- Gain curves at 1, 2 and 3nC

DESY. | THz SASE FEL at PITZ | M. Krasilnikov, DESY-TEMF meeting, 20.10.2022

4000

3500

3000

2500

1000

500

measurement #

a 2000

pulse 1500

pulse energy, nJ

THz SASE FEL at PITZ: Gain Curves (3nC)

Measured pulse energy vs position along undulator for different locations

THz SASE FEL at PITZ: Further Tuning

Recently: Saturation observed for 2nC: max <W>~22µJ

Bayesian optimization for THz SASE FEL

Tuning machine parameters to maximize pyrodetector signal

- Best-suited for optimization over continuous domains of less than 20 dimensions
- bayesopt MATLAB function for finding the global minimum of a function using Bayesian Optimization
 - Online monitoring of the optimization status
 - Allows to resume optimization from a previous run
- **BayesianOpt_test.m Script** for THz SASE optimization
 - Using a config file to setup the magnets (later also others) to be optimized
 - All intermediate machine settings and measurement data are saved for later analysis
 - Hysteresis can be reduced by loading the saved machine settings following the history of the optimization

+31	config.txt 🗶 BayesianOpt_test.m 🗶	
1	% From left to right are magnet	
2	% Always start the magnets from	
3	HIGH3.ST1 0 0.8 0.2 1	
4	HIGH3.ST2 -0.5 0.3 0.2 1	
5	HIGH3.ST3 -0.2 0.6 0.2 1	
6	HIGH2.ST5 -0.8 0 0.2 1	
7	HIGH3.Q1 -2 -0.9 0.2 1	
8	HIGH3.Q2 3 5 0.2 1	
9	HIGH3.Q3 -2.7 -2.1 0.2 1	
Example of input file		
From loft to right:		

From left to right: magnet, lower limit, upper limit, relative change and 0/1

Li, Y.; Zhang, Y.; Cai, Y. A, New Hyper-Parameter Optimization Method for Power Load Forecast Based on Recurrent Neural Networks. Algorithms **2021**, 14, 163.

Ν

THz SASE FEL: Update for better characterization

Since 09.10.2022A

- 7 x SCCs (+2)
- Main optimization at HIGH3.Scr3:
 - Whole THz mirror (w/o hole)
 - Band-Pass Filter BPF 3THz
 - Pyro detector THz10 with remotely controllable amplifier

Undulator

THz radiation with BPF at HIGH3.Scr3 (THz mirror w/o hole) **

SASE vs. seeded with modulated photocathode pulse (preliminary results)

DESY. | THz SASE FEL at PITZ | M. Krasilnikov, DESY-TEMF meeting, 20.10.2022

80

60

40

20

3.5

%

⋚

` ∧

Fluctuations

Conclusions

THz SASE FEL at PITZ

- Photo Injector Test facility at DESY in Zeuthen:
 - develops high brightness electron beams sources and their applications
 - prototype of accelerator based THz source for pump-probe experiments at the European XFEL
- **Proof-of-principle** experiment ongoing @PITZ (supported by EXFEL):

 \rightarrow LCLS-I undulator

- \rightarrow first electrons through the undulator \rightarrow 22.07.2022
- → 1st THz SASE FEL Lasing → beginning of August 2022
- → High gain measured !
- → Strong dependence on beam current and transport /matching
- → Saturation at >20 μ J with 2nC (not fully optimized)
- → First seeding experiments >30µJ with 2nC modulated beams
 High-gain THz SASE FEL at a PITZ-like accelerator → it works!!!
- Next steps:
 - Detailed tuning of high-charge beam transport/matching (trajectory model)
 - Setup full THz and e-beam diagnostics (spectral information, THz camera)
 - Other dedicated studies (BC, seeded THz FEL, SUR)

Outlook

Physics and Computational challenges for proof-of-principle experiments on THz FEL at PITZ

- High bunch charge (beam current)
 →1-4nC (~200A)
- Moderate beam energy → 16-20MeV/c
- Long transport (~30m) of space charge dominated beams
- Extremely tight matching (esp. vertical) of the beam trajectory / envelope into the LCLS-I undulator
- Narrow vacuum undulator chamber (Al)
- Alternative beam transport (e.g., "flat beams"?) and further tuning knobs (gun phase, solenoid) to improve the THz output

3nC beam at PST.Scr1: tuning beam trajectory through TDS

- Wakefields (geometric + resistive):
 - TDS
 - Collimator 6-20mm
 - Undulator vacuum chamber
 - Other beam line elements?
- THz generation:
 - Waveguide effect
 - Seeding (NoP, comp T)
 - Superradiant with short bunches
 - THz radiation transport
- Bunch compressor:
 - Space charge
 - CSR
 - Wakefields
- ...

Currently not well understood:

- Best tuning $3nC \rightarrow 2nC$
- Long compensation coil current is by 20-30% lower than simulated
- Band-Pass Filter (BPF3.0): beam energy is by ~0.6-0.8MeV higher than calculated (K?)
- THz fluctuation rate along the undulator

? "Full physics simulations" including:

- Waveguide effect
- Wakefield (geometric+resistive) effects
- Space charge including MB
- Undulator: 3D field including end cells and horizontal gradient
- Long compensation coils
- No WPA approximation?
- Higher harmonics?
- THz transport to detector
- Initial (shot?) noise
- Imperfections