Finite-Element Simulation of Eddy-Current Effects in Orbit Corrector Magnets

TECHNISCHE UNIVERSITÄT DARMSTADT

Jan-Magnus Christmann

- Introduction
- Homogenization Technique
- Toy Model
- Realistic Model
- Conclusion/Outlook

Introduction

- Circular accelerators need dipole magnets to correct orbit distortions
- **PETRA IV**: ultra-low emittance synchrotron radiation source
 - → AC correctors with frequencies in kHz-range necessary
- Strong eddy currents → power losses, time delay, and field distortion
- Simulation challenging due to small skin depths and laminated yoke

➔ Need for technique to simplify simulations

Based on K. Wille, Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen

- Introduction
- Homogenization Technique
- Toy Model
- Realistic Model
- Conclusion/Outlook

Homogenization Technique

- Magnetoquasistatic PDE: $\nabla \times (\nu \nabla \times \underline{\vec{A}}) + j\omega \sigma \underline{\vec{A}} = \underline{\vec{J}}_{s}$
- Adapt reluctivity v and conductivity σ in the laminated yoke

- Introduction
- Homogenization Technique
- Toy Model
- Realistic Model
- Conclusion/Outlook

Model Description

- **Iron yoke:** length = 40 mm, lamination thickness = 1.83 mm
- **Copper beam pipe:** thickness = 0.5 mm, length = 140 mm
- **Coils**: current = 10 A (peak), # turns = 250
- Frequency domain simulation via CST Studio Suite[®]

Simulation of the Full Model

- Strong mesh dependence of power losses at higher frequencies
 - → Obtaining reliable results is difficult
 - ➔ Need for simplified model

Homogenized vs. Full Model

- Good approximation of losses in yoke & beam pipe (max. relative error 4 %)
- Simulation time reduced from several hours to 4 min

Homogenized vs. Full Model

TECHNISCHE UNIVERSITÄT DARMSTADT

Multipole coefficient	Average rel. error
Dipole	1 %
Quadrupole	5 %
Sextupole	2 %

- Homogenization technique yields
 accurate multipole coefficients
- → Aperture field accurately represented

- Introduction
- Homogenization Technique
- Toy Model
- Realistic Model
- Conclusion/Outlook

Model Description

- Dipole corrector with octupole-like design
- Coils:
 - 4 main coils: current = 27.4 A (peak), # turns = 53
 - 4 auxiliary coils: current = 27.4 A (peak), # turns = 22
- Iron yoke:
 - Diameter = 580 mm, length = 90 mm
 - Lamination thickness = 0.5 mm
- At first no beam pipe

Simulation of the Full Model

- Frequency domain simulation via CST Studio Suite[®]
- Three symmetry planes, test frequencies f = 10 Hz, 100 Hz, 500 Hz, 1000 Hz
- Long simulation times even for relatively coarse meshes
- Finest mesh: # tetrahedra = $2.3 \cdot 10^6$ \rightarrow simulation time = 26 h
- Skin depth cannot be resolved → power loss still mesh-dependent

Homogenized vs. Full Model

Multipole coefficient	Average rel. deviation
Dipole	1 %
14-pole	1 %
18-pole	3 %

• Similar power losses

- Good agreement in multipole coefficients
- Simulation time reduces from 26 h to 5 min

→ Homogenized model can be used for further studies

Keep in mind: Power losses in full model are still meshdependent !

Power Loss for Different Lamination Thicknesses

- Use homogenization to investigate losses up to 65 kHz
- Vary d = 0.2 0.5 mm, keep $\gamma \approx 0.91$ constant

Simulation uses the same current for all frequencies !

- At low frequencies, the lamination thickness has strong influence on the losses
- At very high frequencies, the lamination thickness has no influence on the losses

Longitudinal Multipole Distribution (Static)

TECHNISCHE UNIVERSITÄT DARMSTADT

- Compute multipole coefficients along longitudinal axis of the magnet
- Comparison with DESY for static case → good agreement

Longitudinal Multipole Distribution (Time-Harmonic)

Realistic Model With Beam Pipe

- Round beam pipe consisting of austenitic stainless steel layer, a thin copper layer, and an even thinner gold layer in between
- Longitudinal extent of beam pipe: $z = -500 \text{ mm} \dots 500 \text{ mm}$

Longitudinal Multipole Distribution

Model With Beam Pipe vs. Without Beam Pipe

Dipole Coefficients at $f = 65 \,\mathrm{kHz}$

- Up to $f \approx 1 \text{ kHz}$ only minor differences between two models
- For f >> 1 kHz: Strong attenuation of dipole field due to eddy currents in beam pipe
- At higher frequencies, beam pipe leads to greater effective length of the magnet

Model With Beam Pipe vs. Without Beam Pipe

- Introduction
- Homogenization Technique
- Toy Model
- Realistic Model
- Conclusion/Outlook

Conclusion/Outlook

- Validation of homogenization technique using toy model
 - → Good approximation of multipoles and power losses
 - → Simulation time reduced from several hours to a few minutes
- Application to realistic model without beam pipe (DC up to 65 kHz)
 - Study of power losses for different lamination thicknesses
 - Study of longitudinal multipole distributions
- Application to realistic model with beam pipe (DC up to 65 kHz)
 - Study of longitudinal multipole distributions
 - Comparison to model without beam pipe
- **Next steps**: Continue study of realistic model with beam pipe, investigate model with thinner beam pipe and different yoke materials

References

[1] PETRA IV Conceptual Design Report.

- [2] H. De Gersem, S. Vanaverbeke, and G. Samaey, "Three-Dimensional-Two-Dimensional Coupled Model for Eddy Currents in Laminated Iron Cores," *IEEE. Trans. Magn.*, vol. 48, no. 2, pp.815 818, Feb. 2012.
- [3] P. Dular et al., "A 3-D Magnetic Vector Potential Formulation Taking Eddy Currents in Lamination Stacks Into Account," *IEEE Trans. Magn.*, vol. 39, no. 3, pp. 1424-1427, May 2003.
- [4] J. Gyselinck and P. Dular, "A Time-Domain Homogenization Technique for Laminated Iron Cores in 3-D Finite-Element Models," *IEEE Trans. Magn.*, vol. 40, no. 2, pp. 856 859, Mar. 2004.
- [5] L. Krähenbühl et al., "Homogenization of Lamination Stacks in Linear Magnetodynamics," *IEEE Trans. Magn.*, vol. 40, no. 2, pp. 912 915 Mar. 2004.
- [6] K. Wille, Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen. Stuttgart, Germany: Teubner, 1992.
- [7] S. Koch, "Quasistatische Feldsimulationen auf der Basis von Finiten Elementen und Spektralmethoden in der Anwendung auf supraleitende Magnete," Ph.D. dissertation, TU Darmstadt, 2009.
- [8] J. Lammeraner and M. Stafl, Eddy Currents. Iliffe books, 1996.

